
Mathematics and Mathematical Modelling: A
mathematical model is a representation of natural or
artificial phenomena using mathematical concepts and
equations. Mathematical models are usually composed
of  relationships, constants, and variables. This form
of  expression is considered among the highest forms
of knowledge and most accurate representation of
any hypothesis or theory. Mathematical laws are
immutable and can span the entire spectrum of time.
A model may help to explain a system and to study
the effects of  different components. Mathematical
models also provide a means of making predictions
about behaviour of systems through time. Knowledge
at the level of mathematical models is very near
perfection as possible. A good mathematical model
can alter the way we perceive phenomena, while poor
theories continue to change and be improved upon.
Mathematical models are highly regarded by workers
in every field of human knowledge. This makes
mathematics the queen of all sciences and the ultimate
language of expression in science.

Traditionally, mathematical models are made up of
four major components; the governing equation,
defining equations, constitutive equations, and
constraints. Models may be linear, non-linear, static,
dynamic, discrete, continuous, deterministic,
probabilistic (stochastic), deductive, inductive, floating,
or mixed. Maps and graphs represent very early uses
of  mathematical modelling. Usually the easiest part of
model evaluation is checking whether a model fits
experimental measurements or other empirical data.
In models with parameters, a common approach to

test this fit is to divide the data into two subsets: training
data and verification data. The training data is used to
estimate the model parameters. An accurate model will
closely match the verification data even though these
data were not used to set the model’s parameters. This
process is referred to as cross-validation in statistics.
Where data involves a lot of variability (as seen with
biological data), statistical models have been developed
that can handle them. Over the millennia,
mathematicians have developed powerful methods and
tools of  analysis.

History has recorded many significant mathematicians.
Great mathematicians include Pythagoras, Euclid,
Archimedes, Ptolemy, Hipparchus, Copernicus,
Fibonacci, Fermat, Kepler, Gauss, Galileo, Newton,
and Descartes. Perhaps the most notable
mathematician, whose work made very significant
impact on biomedical research, is Johann Carl Friedrich
Gauss, the man who extensively described the Normal
Curve which is fundamental to the field of  Statistics.

Johann Carl Friedrich Gauss was a German
mathematician who contributed significantly to many
fields, including number theory, algebra, statistics,
analysis, differential geometry, geodesy, geophysics,
mechanics, electrostatics, astronomy, matrix theory, and
optics. He is referred to as the foremost of
mathematicians and greatest mathematician since
antiquity. Gauss had an exceptional influence in many
fields of mathematics and science and is ranked as
one of  history’s most influential mathematicians.
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SUMMARY
Mathematics is one of the most powerful methods of communication and
a language that unites all of science. Mathematics is used to express
knowledge in its purest form between the physical and biological sciences,
however, there is a huge gulf between the two sciences and researchers
have continued to build more bridges between them. The future of science
will involve increasing use of mathematics in describing natural and
artificial phenomena and in building bridges among diverse disciplines.
Mathematical models provide a means of holistic evaluation of natural
occurrences and a means of predicting future trends. Mathematical models
have been used to halt epidemics and predict probable future occurrences
with a high degree of  accuracy. It is thus wise for all researchers to explore
the incorporation of aspects of mathematical modelling to their fields of
research. This will increase the scope and impact of research findings.
This essay is a brief examination of the role of mathematical models and
the influence of  the subject on medical research over the years.



Gauss was born on 30 April 1777 in the lower Saxony,
Germany. A son of  humble parents his intellectual
abilities amazed all that came in contact with him. A
child prodigy, he discovered many mathematical
theorems on his own, without looking them up in
textbooks. He was the first to prove the quadratic
reciprocity law, which allows mathematicians to
determine the solvability of  any quadratic equation.

Gauss was a religious man who once wrote, after
solving a very difficult problem that once defeated
him that “finally, I succeeded – not on account of  my
hard efforts – but by the Grace of the Lord.” Gauss
declared he firmly believed in the afterlife, and saw
spirituality as something essential for human beings.
He invented many new methods in astronomy. His
extensive work on the Normal curve gave a
foundation for Statistics and Mathematical Modelling.

The Normal Distribution Curve: the Normal (or
Gaussian) distribution is a continuous probability
distribution and in its most general form states that
averages of random variables independently drawn
from independent distributions (populations, samples,
etc.) converge in distribution to the Normal, that is,
become normally distributed when the number of
random variables is sufficiently large. The probability
density of  the Normal distribution can be represented
by the equation:

Where  is mean or expectation of the distribution
(and also its median and mode), is standard deviation,
and 2 variance.

Some Early Mathematical Models in Medical
Literature: A search of PUBMED titles containing
the phrase ‘mathematical model’ shows that
Publications on applications of mathematical models
to biomedical research have risen progressively over
the years (Figure 1). Among the earliest applications
of mathematical models in the biomedical field were
reports by Bray, Thorpe, White, Bush, and Mosteller
who described a differential mathematical models as
early as 1951.1

In a series of papers, Bray et al published reports on
the kinetics of reactions involving benzoic acid, phenols
and compounds which give rise to them. These models
assume different approaches to first and zero order
kinetics and the transition in the kinetics of metabolism
described2. Howard Milhorn and colleagues described
a mathematical model of the human respiratory system
in 1965.3 Assumptions that were made in the
determination of  the equations of  the model include
that the system consists of three compartments (the
lungs, brain tissues, and the body tissues) and that blood
flow to the tissues is determined by arterial PCO2 and
PO2. The equations were tested using an IBM 1620
digital computer; although the model predictions
approximated experimental results, the authors noted
areas requiring further improvement.

Infectious diseases are an important focus of
mathematical modelling research. In the abstract of
the publication by Najera in 1974, it was noted that a
malaria control field research trial in Northern Nigeria
was planned with the aid of a computer simulation
based on Macdonald’s mathematical model of  malaria
epidemiology.4 Theoretical predictions of  the model
showed wide variation when compared to the field
values obtained. It was concluded that research efforts
should be encouraged to increase knowledge of the
basic epidemiologic factors, their variation and
correlations, and that with these, more realistic
theoretical models could be developed. This supports
the well-known fact that mathematical models are as
good as the data used in developing them. In
pharmacology, the entire subject of  pharmacokinetics
is founded on mathematical models. Some other early
reports of mathematical modelling research in
biomedical fields are shown in Table 1.

The Ebola Virus Disease (EVD) Epidemic of
West Africa: Ebola virus disease is a lethal human
and primate disease that currently requires particular
attention from the international health authorities due
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to important outbreaks in some Western African
countries and isolated cases in the UK, the USA and
Spain.15 Very few people are aware of  the role
mathematics played in the containment of the Ebola
epidemic of  2015. Be-CoDiS, a Mathematical Model
to Predict the Risk of Human Diseases Spread
between Countries - Validation and Application to the
2014-2015 Ebola Virus Disease Epidemic was
developed and described in a publication by Ivora,
Ngom, and Ramos in 2015. The model is a novel
deterministic spatial-temporal model, called Between-
Countries Disease Spread (Be-CoDiS), which was
designed to study the evolution of human diseases

within and between countries. The main interesting
characteristics of Be-CoDiS are the consideration of
the movement of people between countries, the
control measure effects and the use of time-dependent
coefficients adapted to each country.15 While this model
was designed to predict outbreaks and spread of the
deadly disease, researchers faced a difficult decision
on the best way to conduct a clinical trial of a vaccine
that did not have adequate pre-clinical data on safety
in animals. Yet the vaccine was to be used in humans.
The epidemic offered no opportunity for the
prolonged pre-clinical phases of trial of the vaccine.
Scientists turned to mathematical modelling.

Lead author Year Title Ref
Hammerton, M. 1959 A mathematical model for perception and a theoretical confusion

function
(5)

Funk, J. E. 1960 A mathematical model for gas-liquid partition chromatography (6)
Ammann, P. R. 1961 In vivo gamma lung measurements--a mathematical model (7)
Dantzig, G. B. 1961 A mathematical model of the human external respiratory system (8)
Gott, F. S. 1961 A mathematical model of dilution curves for flow study (9)
Wajchenberg, B. L. 1961 Preliminary mathematical model for glucagon-induced hepatic

glycogenolysis in man
(10)

Greene, P. H. 1962 On looking for neural networks and "cell assemblies" that underlie
behavior. I. A mathematical model

(11)

Grene, P. H. 1962 On looking for neural networks and "cell assemblies" that underlie
behavior. II. Neural realization of the mathematical model

(12)

Mellergard, M 1962 A mathematical model for clinical diagnosis (13)
Shumway, R. H. 1962 Mathematical model of transport mechanisms influencing strontium

90 levels in milk
(14)

Table 1: Some early reports of  mathematical modelling research in biomedical fields



Policy makers were confronted with difficult decisions
on how best to test the efficacy of Ebola Virus Disease
(EVD) vaccines. A stepped-wedge cluster study
(SWCT) was proposed as an alternative to a more
traditional randomized controlled vaccine trial to
address these concerns.16 In 2016, Ibrahim Diakite and
colleagues proposed a novel “ordered stepped-wedge
cluster trial” (OSWCT) designed to address these
limitations of  the standard SWCT.17 The design was
based on a mathematical model. Firstly, they
constructed a meta-population model that combines
EVD transmission and individuals’ movements
between regions in order to predict the spatiotemporal
trends of the disease. Then they used either the
observed or modelled incidence data within districts
of Sierra Leon to assign clusters to receive vaccination
for the OSWCT designs. Then they used a stochastic
model to simulate all trial designs, and finally used a

nonparametric method (permutation test) to analyse
the simulated data and to estimate the statistical power
of  trial designs. The results supported OSWCTs as a
more efficient design than the standard SWCT.

Ngwa GA and Teboh-Ewungkem described a
mathematical model with quarantine states for the
dynamics of  ebola virus disease in human populations.18

Lead Author Year Title Ref
Chowell G 2004 The basic reproductive number of Ebola and the effects of public

health measures: the cases of Congo and Uganda.
(19)

Althaus CL 2014 Estimating the Reproduction Number of Ebola Virus (EBOV)
During the 2014 Outbreak in West Africa.

(20)

Towers S 2014 Temporal variations in the effective reproduction number of the
2014 west Africa ebola outbreak.

(21)

Chowell, G. 2014 Transmission dynamics and control of Ebola virus disease (EVD): a
review

(22)

Atangana, A. 2014 On the mathematical analysis of Ebola hemorrhagic fever: deathly
infection disease in West African countries

(23)

Agusto, F. B. 2015 Mathematical assessment of the effect of traditional beliefs and
customs on the transmission dynamics of the 2014 Ebola outbreaks

(24)

Althaus, C. L. 2015 Ebola virus disease outbreak in Nigeria: Transmission dynamics and
rapid control

(25)

Xia, Z. Q. 2015 Modelling the transmission dynamics of Ebola virus disease in
Liberia

(26)

Vandebosch, A. 2016 Simulation-guided phase 3 trial design to evaluate vaccine
effectiveness to prevent Ebola virus disease infection: Statistical
considerations, design rationale, and challenges

(27)

Fang, L. Q 2016 Transmission dynamics of Ebola virus disease and intervention
effectiveness in Sierra Leone

(28)

Chowell, G. 2016 Mathematical models to characterize early epidemic growth: A
review

(29)

Agusto, F. B. 2017 Mathematical model of Ebola transmission dynamics with relapse
and reinfection

(30)

The model was designed to evaluate transmission of
the disease both in treatment centres and in the
community. Possible sources of  exposure to infection,
including cadavers of Ebola Virus victims, were
included in the model derivation and analysis. The
model’s results showed that there exists a threshold
parameter, R0, with the property that when its value is
above unity, an endemic equilibrium exists whose value
and size are determined by the size of  this threshold
parameter, and when its value is less than unity, the
infection does not spread into the community. The
results showed that eventually the system settles down
to a nonzero fixed point when there is constant
recruitment into the population of 555 persons per
day and for R0 > 1. The values of the steady states
were completely determined in terms of  the
parameters in the cases. Their analysis also showed that
it was possible to control EVD infection in the

community provided there is a reduction and
maintenance of the reproduction number to below
unity. They found that such control measures were
possible if there was effective contact tracing and
identification of EVD patients and effective
quarantining, since a reduction of the proportion of
cases that escape quarantine reduces the value of R0.
Additionally, the model results indicated that when there

Table 2: Mathematical models of  Ebola Virus Disease (EVD)
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was a high constant number of recruitment into an
EVD community, quarantining alone may not be
sufficient in eradicating the disease. However, it may
serve as a buffer enhancing a sustained epidemic. The
model predicted that reducing the number of persons
recruited per day could bring the diseases to very low
values. These and other models guided decisions that
eventually resulted in effective control of the disease.
Some other publications of mathematical modelling
EVD research are shown in Table 2.

CONCLUSION
Mathematics is one of the most powerful methods
of communication and a language that unites all of
science. Mathematical models unite the biological and
physical sciences. Mathematical models have been used
to obtain important results in biomedical fields; they
provide a means of holistic evaluation of natural
occurrences and a means of predicting future trends
with a high degree of  accuracy. Math models have
been used to predict and halt epidemics. There remains
a huge gulf between the biological and physical
sciences, however, researchers have continued to build
more and more bridges between them. The future of
science will involve more and more use of mathematics
in describing natural and artificial phenomena. It is thus
wise for all researchers to explore the incorporation
of aspects of mathematical modelling to their fields
of  research. To explore adding the ‘Queen’ of  the
sciences to their hypotheses, theories, and arguments.
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