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Sample size
The sample size of a statistical sample is the number
of  observations that constitute it. It is typically denoted
n, a positive integer (natural number). Typically, all else
being equal, a larger sample size leads to increased
precision in estimates of various properties of the
population. This can be seen in such statistical rules as
the law of large numbers and the central limit theorem.
Repeated measurements and Replication of
independent samples are often required in measurement
and experiments to reach a desired precision.

A typical example would be when a statistician wishes
to estimate the arithmetic mean of a continuous
random variable (for example, the height of a person).
Assuming that they have a random sample with
independent observations, then if  the variability of
the population (as measured by the standard deviation
ó) is known, then the standard error of the sample
mean is given by the formula:

It is easy to show that as n becomes large, this variability
becomes very small. This yields to more sensitive
hypothesis tests with greater statistical power and
smaller confidence intervals.

Central Limit Theorem
The central limit theorem is a significant result which
depends on sample size. It states that as the size of a
sample of  independent observations approaches
infinity, provided data come from a distribution with
finite variance, that the sampling distribution of the
sample mean approaches a normal distribution.

Estimating Proportions
A typical statistical aim is to demonstrate with 95%
certainty that the true value of a parameter is within a
distance B of the estimate: B is an error range that
decreases with increasing sample size (n). The value of
B generated is referred to as the 95% confidence
interval.
For example, a simple situation is estimating a
proportion in a population. To do so, a statistician
will estimate the bounds of  a 95% confidence interval
for an unknown proportion.
The rule of  thumb for (a maximum or ‘conservative’)
B for a proportion derives from the fact the estimator
of a proportion, , (where X is the
number of  ‘positive’ observations) has a (scaled)
binomial distribution and is also a form of  sample
mean (from a Bernoulli distribution [0,1] which has a
maximum variance of 0.25 for parameter p = 0.5).
So, the sample mean X/n has maximum variance 0.25/
n. For sufficiently large n (usually this means that we
need to have observed at least 10 positive and 10
negative responses), this distribution will be closely
approximated by a normal distribution with the same
mean and variance.

Using this approximation, it can be shown that ~95%
of  this distribution’s probability lies within 2 standard
deviations of  the mean. Because of  this, an interval
of  the form

will form a 95% confidence interval for the true
proportion.

If we require the sampling error å to be no larger than
some bound B, we can solve the equation

to give us

So, n = 100 <=> B = 10%, n = 400 <=> B = 5%, n
= 1000 <=> B = ~3%, and n = 10000 <=> B = 1%.
One sees these numbers quoted often in news reports
of  opinion polls and other sample surveys.

Extension to other cases
In general, if a population mean is estimated using the
sample mean from n observations from a distribution
with variance ó², then if n is large enough (typically
>30) the central limit theorem can be applied to obtain
an approximate 95% confidence interval of  the form

If the sampling error å is required to be no larger than
bound B, as above, then

Note, if the mean is to be estimated using P parameters
that must first be estimated themselves from the same
sample, then to preserve sufficient “degrees of
freedom,” the sample size should be at least n + P.

Required Sample Sizes for Hypothesis Tests
A common problem facing statisticians is calculating
the sample size required to yield a certain power for a
test, given a predetermined Type I error rate á. A typical
example for this is as follows:
Let X i , i = 1, 2, ..., n be independent observations
taken from a normal distribution with mean ì and
variance ó2 . Let us consider two hypotheses, a null
hypothesis:

and an alternative hypothesis:

for some ‘smallest significant difference’ ì* >0. This is
the smallest value for which we care about observing
a difference. Now, if  we wish to (1) reject H0 with a
probability of at least 1-â when Ha is true (i.e. a power
of 1-â), and (2) reject H0 with probability á when H0
is true, then we need the following:
If zαis the upperαpercentage point of the standard
normal distribution, then

H0:μ = 0

Ha:μ = μ *
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and so

‘Reject Ho if our sample average ( ) is more than

is a decision rule which satisfies (2). (Note, this is a 1-
tailed test)

Now we wish for this to happen with a probability at
least 1-â when Ha is true. In this case, our sample
average will come from a Normal distribution with
mean ì*. Therefore we require

Through careful manipulation, this can be shown to
happen when

where Ö is the normal cumulative distribution
function.

Stratified Sample Size
With more complicated sampling techniques, such as
Stratified sampling, the sample can often be split up
into sub-samples. Typically, if  there are k such sub-
samples (from k different strata) then each of them
will have a sample size ni, i = 1, 2, ..., k. These ni must
conform to the rule that n1 + n2 + ... + nk = n (i.e. that
the total sample size is given by the sum of the sub-
sample sizes). Selecting these ni optimally can be done
in various ways, using (for example) Neyman’s optimal
allocation.

According to Leslie Kish,[1] there are many reasons to
do this; that is to take sub-samples from distinct sub-
populations or “strata” of the original population: to
decrease variances of sample estimates, to use partly
non-random methods, or to study strata individually.
A useful, partly non-random method would be to
sample individuals where easily accessible, but, where
not, sample clusters to save travel costs.
In general, for H strata, a weighted sample mean is

with

The weights, W(h), frequently, but not always, represent
the proportions of the population elements in the
strata, and W(h)=N(h)/N. For a fixed sample size, that
is n=Sum{n(h)},

which can be made a minimum if the sampling rate

within each stratum is made proportional to the
standard deviation within each stratum: nh / Nh = kSh.

An “optimum allocation” is reached when the sampling
rates within the strata are made directly proportional
to the standard deviations within the strata and inversely
proportional to the square roots of the costs per
element within the strata:

or, more generally, when

Statistical Power
The power of a statistical test is the probability that
the test will reject a false null hypothesis (that it will not
make a Type II error). As power increases, the chances
of  a Type II error decrease. The probability of  a Type
II error is referred to as the false negative rate (â).
Therefore power is equal to 1 ” â.

Power analysis can either be done before (a priori) or
after (post hoc) data is collected. A priori power analysis
is conducted prior to the research study, and is typically
used to determine an appropriate sample size to
achieve adequate power. Post-hoc power analysis is
conducted after a study has been completed, and uses
the obtained sample size and effect size to determine
what the power was in the study, assuming the effect
size in the sample is equal to the effect size in the
population.

Statistical tests attempt to use data from samples to
determine if  differences or similarities exist in a
population. For example, to test the null hypothesis
that the mean scores of men and women on a test do
not differ, samples of men and women are drawn,
the test is administered to them, and the mean score
of one group is compared to that of the other group
using a statistical test. The power of the test is the
probability that the test will find a statistically significant
difference between men and women, as a function of
the size of the true difference between those two
populations. Despite the use of  random samples, which
will tend to mirror the population due to mathematical
properties such as the central limit theorem, there is
always a chance that the samples will appear to support
or refute a tested hypothesis when the reality is the
opposite. This risk is quantified as the power of the
test and as the statistical significance level used for the
test.

Statistical power depends on:
· the statistical significance criterion used in the test.
· the size of the difference or the strength of the

similarity (that is, the effect size) in the population.
· the sensitivity of the data.
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A significance criterion is a statement of how unlikely
a result must be, if the null hypothesis is true, to be
considered significant. The most commonly used
criteria are probabilities of 0.05 (5%, 1 in 20), 0.01
(1%, 1 in 100), and 0.001 (0.1%, 1 in 1000). If the
criterion is 0.05, the probability of the difference must
be less than 0.05, and so on. One way to increase the
power of a test is to increase (that is, weaken) the
significance level. This increases the chance of obtaining
a statistically significant result (rejecting the null
hypothesis) when the null hypothesis is false, that is,
reduces the risk of  a Type II error. But it also increases
the risk of obtaining a statistically significant result when
the null hypothesis is in fact true; that is, it increases the
risk of  a Type I error.

Calculating the power requires first specifying the effect
size you want to detect. The greater the effect size, the
greater the power.

Sensitivity can be increased by using statistical controls,
by increasing the reliability of measures (as in
psychometric reliability), and by increasing the size of
the sample. Increasing sample size is the most
commonly used method for increasing statistical power.
Although there are no formal standards for power,
most researchers who assess the power of their tests
use 0.80 as a standard for adequacy.

A common misconception by those new to statistical
power is that power is a property of a study or
experiment. In reality any statistical result that has a p-
value has an associated power. For example, in the
context of a single multiple regression, there will be a
different level of statistical power associated with the
overall r-square and for each of the regression
coefficients. When determining an appropriate sample
size for a planned study, it is important to consider
that power will vary across the different hypotheses.

There are times when the recommendations of power
analysis regarding sample size will be inadequate. Power
analysis is appropriate when the concern is with the
correct acceptance or rejection of  a null hypothesis. In
many contexts, the issue is less about determining if
there is or is not a difference but rather with getting a
more refined estimate of the population effect size.
For example, if  we were expecting a population
correlation between intelligence and job performance
of around .50, a sample size of 20 will give us
approximately 80% power (alpha = .05, two-tail).
However, in doing this study we are probably more
interested in knowing whether the correlation is .30 or
.60 or .50. In this context we would need a much
larger sample size in order to reduce the confidence
interval of  our estimate to a range that is acceptable
for our purposes. These and other considerations often
result in the recommendation that when it comes to
sample size, “More is better!”

Funding agencies, ethics boards and research review
panels frequently request that a researcher perform a
power analysis. The argument is that if  a study is

inadequately powered, there is no point in completing
the research.

Student’s t-test
A t-test is any statistical hypothesis test in which the
test statistic has a Student’s t distribution if  the null
hypothesis is true. It is applied when sample sizes are
small enough that using an assumption of  normality
and the associated z-test leads to incorrect inference.

Use
A t-test is any statistical hypothesis test in which the
test statistic has a Student’s t-distribution if  the null
hypothesis is true. It is applied when sample sizes are
small enough that using an assumption of  normality
and the associated z-test leads to incorrect inference.
Among the most frequently used t tests are:

· A test of the null hypothesis that the means of two
normally distributed populations are equal. Given two
data sets, each characterized by its mean, standard
deviation and number of data points, we can use some
kind of t test to determine whether the means are
distinct, provided that the underlying distributions can
be assumed to be normal. All such tests are usually
called Student’s t tests, though strictly speaking that
name should only be used if the variances of the two
populations are also assumed to be equal; the form
of the test used when this assumption is dropped is
sometimes called Welch’s t test. There are different
versions of the t test depending on whether the two
samples are
• unpaired, independent of  each other (e.g., individuals

randomly assigned into two groups), or
• paired, so that each member of one sample has a

unique relationship with a particular member of the
other sample (e.g., the same people measured before
and after an intervention, or IQ test scores of  a
husband and wife).

If the calculated p-value is below the threshold chosen
for statistical significance (usually the 0.10, the 0.05, or
0.01 level), then the null hypothesis which usually states
that the two groups do not differ is rejected in favor
of an alternative hypothesis, which typically states that
the groups do differ.

· A test of  whether the mean of  a normally distributed
population has a value specified in a null hypothesis.

· A test of whether the slope of a regression line
differs significantly from 0.

Once a t value is determined, a p-value can be found
using a table of  values from Student’s t-distribution.

Assumptions· Normal distribution of  data, tested by using a
normality test, such as Shapiro-Wilk and
Kolmogorov-Smirnov test.· Equality of variances, tested by using either the F
test, the more robust Levene’s test, Bartlett’s test, or
the Brown-Forsythe test.
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An example of a repeated measures t-test would
be if one group were pre- and post-tested. (This
example occurs in education quite frequently.) If  a
teacher wanted to examine the effect of a new set of
textbooks on student achievement, (s)he could test the
class at the beginning of the year (pretest) and at the
end of the year (posttest). A dependent t-test would
be used, treating the pretest and posttest as matched
variables (matched by student).

Calculations
Independent one-sample t-test
This equation is used to compare one sample mean to
a specific value

Where s is the grand standard deviation of the sample.
n is the sample size. The degrees of freedom used in
this test is n ” 1.

Independent two-sample t-test
Equal sample sizes, equal variance

This equation is only used when both:

· the two sample sizes (that is, the n or number
of participants of each group) are equal;

· it can be assumed that the two distributions
have the same variance.

Violations of  these assumptions are discussed below.

The t statistic to test whether the means are different
can be calculated as follows:

where

[1]

Here is the grand standard deviation (or
pooled standard deviation), 1 = group one, 2 = group
two. The denominator of t is the standard error of
the difference between two means. For significance
testing, the degrees of freedom for this test is 2n ” 2
where n = # of  participants in each group.

Unequal Sample Sizes, Equal Variance
This equation is only used when it can be assumed
that the two distributions have the same variance.
(When this assumption is violated, see below.) The t
statistic to test whether the means are different can
be calculated as follows:

· Samples may be independent or dependent,
depending on the hypothesis and the type of
samples:
o Independent samples are usually two randomly

selected groups

o Dependent samples are either two groups
matched on some variable (for example, age) or
are the same people being tested twice (called
repeated measures)

Since all calculations are done subject to the null
hypothesis, it may be very difficult to come up with a
reasonable null hypothesis that accounts for equal
means in the presence of  unequal variances. In the usual
case, the null hypothesis is that the different treatments
have no effect — this makes unequal variances
untenable. In this case, one should forgo the ease of
using this variant afforded by the statistical packages.
See also Behrens-Fisher problem.

One scenario in which it would be plausible to have
equal means but unequal variances is when the ‘samples’
represent repeated measurements of  a single quantity,
taken using two different methods. If  systematic error
is negligible (e.g. due to appropriate calibration) the
effective population means for the two measurement
methods are equal, but they may still have different
levels of  precision and hence different variances.

Determining Type
For novices, the most difficult issue is often whether
the samples are independent or dependent.
Independent samples typically consist of two groups
with no relationship. Dependent samples typically
consist of a matched sample (or a “paired” sample)
or one group that has been tested twice (repeated
measures).

Dependent t-tests are also used for matched-paired
samples, where two groups are matched on a
particular variable. For example, if  we examined the
heights of  men and women in a relationship, the two
groups are matched on relationship status. This would
call for a dependent t-test because it is a paired sample
(one man paired with one woman). Alternatively, we
might recruit 100 men and 100 women, with no
relationship between any particular man and any
particular woman; in this case we would use an
independent samples test.
Another example of a matched sample would be to
take two groups of students, match each student in
one group with a student in the other group based on
an achievement test result, then examine how much
each student reads. An example pair might be two
students that score 90 and 91 or two students that
scored 45 and 40 on the same test. The hypothesis
would be that students that did well on the test may
or may not read more. Alternatively, we might recruit
students with low scores and students with high scores
in two groups and assess their reading amounts
independently.

μ0.
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where

                          [2]

Note that the formulae above are generalizations for
the case where both samples have equal sizes (substitute
n1 and n2 for n and you’ll see).

 is the unbiased estimator of the variance of
the two samples, n = number of participants, 1 =
group one, 2 = group two. n ” 1 is the number of
degrees of  freedom for either group, and the total
sample size minus 2 (n1 + n2 “ 2) is the total number
of degrees of freedom, which is used in significance
testing.

The statistical significance level associated with the t
value calculated in this way is the probability that, under
the null hypothesis of equal means, the absolute value
of t could be that large or larger just by chance—in
other words, it’s a two-tailed test, testing whether the
means are different when, if they are, either one may
be the larger (see Press et al, 1999, p. 616).

Unequal Sample Sizes, Unequal Variance
This equation is only used when the two sample sizes
are unequal and the variance is assumed to be different.
See also Welch’s t test. The t statistic to test whether
the means are different can be calculated as follows:

where

Where s2 is the unbiased estimator of the variance of
the two samples, n = number of participants, 1 =
group one, 2 = group two. Note that in this case,  is
not a pooled variance. For use in significance testing,
the distribution of the test statistic is approximated as
being an ordinary Student’s t distribution with the
degrees of freedom calculated using:

This equation is called the Welch-Satterthwaite equation.
Note that the true distribution of the test statistic actually
depends (slightly) on the two unknown variances: see
Behrens-Fisher problem.

This test can be used as either a one-tailed or two-
tailed test.

Dependent t-test
This equation is used when the samples are dependent;
that is, when there is only one sample that has been
tested twice (repeated measures) or when there are
two samples that have been matched or “paired”.

For this equation, the differences between all pairs must
be calculated. The pairs are either one person’s pre-
test and post-test scores or between pairs of persons
matched into meaningful groups (for instance drawn
from the same family or age group: see table). The
average (XD) and standard deviation (sD) of those
differences are used in the equation. The constant ì0 is
non-zero if you want to test whether the average of
the difference is significantly different than ì0. The
degree of freedom used is N-1.

Example
A random sample of screws have weights

30.02, 29.99, 30.11, 29.97, 30.01, 29.99
Calculate a 95% confidence interval for the
population’s mean weight.

Assume the population is distributed as N(μ, ó2).

The samples’ mean weight is 30.015 with standard
deviation of 0.0497. With the mean and the first five
weights it is possible to calculate the sixth weight.
Consequently there are five degrees of freedom.

Example of matched pairs

Pair Name Age Test

1 Jon 35 250

1 Jane 36 340

2 Jimmy 22 460

2 Jessy 21 200

Example of repeated measures

Number Name Test 1 Test 2

1 Mike 35% 67%

2 Melanie 50% 46%

3 Melissa 90% 86%

4 Mitchell 78% 91%
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We can lookup in the table that for a confidence range
of 95% and five degrees of freedom, the value is
2.571.

i.e.

If  we sampled many times, our interval would capture
the true mean weight 95% of the time; thus, we are
95% confident that the true mean weight of all screws
will fall between 29.96 and 30.07

Alternatives to the t test
Recall that the t test can be used to test the equality of
the means of  two normal populations with unknown,
but equal, variance.
· To relax the normality assumption, a non-parametric
alternative to the t test can be used, and the usual choices
are:

o for independent samples, the Mann-Whitney U test
o for related samples, either the binomial test or the

Wilcoxon signed-rank test
· To test the equality of  the means of  more than two
normal populations, an Analysis of  Variance can be
performed
· To test the equality of  the means of  two normal
populations with known variance, a Z-test can be
performed

History
The t statistic was introduced by William Sealy Gosset
for cheaply monitoring the quality of beer brews
(“Student” was his pen name) [3]. Gosset was a
statistician for the Guinness brewery in Dublin, Ireland,
and was hired due to Claude Guinness’s innovative
policy of recruiting the best graduates from Oxford
and Cambridge to apply biochemistry and statistics to
Guinness’ industrial processes[3]. Gosset published the
t test in Biometrika in 1908, but was forced to use a
pen name by his employer who regarded the fact that
they were using statistics as a trade secret. In fact,
Gosset’s identity was known not only to fellow
statisticians but to his employer — the company insisted
on the pseudonym[4] so that it could turn a blind eye
to the breach of  its rules.

Today, it is more generally applied to the confidence
that can be placed in judgments made from small
samples.

Most spreadsheet programs and statistics packages,
such as DAP, gretl, R and PSPP include
implementations of  Student’s t-test.

Meta-analysis
In statistics, a meta-analysis combines the results of
several studies that address a set of related research
hypotheses. The first meta-analysis was performed by
Karl Pearson in 1904, in an attempt to overcome the

problem of reduced statistical power in studies with
small sample sizes; analyzing the results from a group
of  studies can allow more accurate data analysis.

Although meta-analysis is widely used in epidemiology
and evidence-based medicine today, a meta-analysis
of a medical treatment was not published until 1955.
In the 1970s, more sophisticated analytical techniques
were introduced in educational research, starting with
the work of  Gene V. Glass, Frank L. Schmidt and
John E. Hunter.

The online Oxford English Dictionary lists the first
usage of  the term in the statistical sense as 1976 by
Glass. The statistical theory surrounding meta-analysis
was greatly advanced by the work of  Nambury S.
Raju, Larry V. Hedges, Harris Cooper, Ingram Olkin,
John E. Hunter, Jacob Cohen, and Frank L. Schmidt.

Uses in Modern Science
Because the results from different studies investigating
different independent variables are measured on
different scales, the dependent variable in a meta-
analysis is some standardized measure of effect size.
To describe the results of  comparative experiments
the usual effect size indicator is the standardized mean
difference (d) which is the standard score equivalent
to the difference between means, or an odds ratio if
the outcome of the experiments is a dichotomous
variable (success versus failure). A meta-analysis can
be performed on studies that describe their findings
in correlation coefficients, as for example, studies of
the correlation between familial relationships and
intelligence. In these cases, the correlation itself is the
indicator of the effect size.

The method is not restricted to situations in which
one or more variables is defined as “dependent.” For
example, a meta-analysis could be performed on a
collection of studies each of which attempts to estimate
the incidence of left-handedness in various groups of
people.

Researchers should be aware that variations in sampling
schemes can introduce heterogeneity to the result,
which is the presence of more than one intercept in
the solution. For instance, if  some studies used 30mg
of a drug, and others used 50mg, then we would
plausibly expect two clusters to be present in the data,
each varying around the mean of one dosage or the
other. This can be modelled using a “random effects
model.”

Results from studies are combined using different
approaches. One approach frequently used in meta-
analysis in health care research is termed ‘inverse
variance method’. The average effect size across all
studies is computed as a weighted mean, whereby the
weights are equal to the inverse variance of each
studies’ effect estimator. Larger studies and studies with
less random variation are given greater weight than
smaller studies. Other common approaches include
the Mantel Haenszel method and the Peto method. A

                                                   Annals of Ibadan Postgraduate  Medicine. Vol.6 No.1 June, 2008   40



free Excel-based calculator to perform Mantel
Haenszel analysis is available at: http://www.pitt.edu/
~super1/lecture/lec1171/014.htm. They also have a
free Excel-based Peto method calculator at : http://
www.pitt.edu/~super1/lecture/lec1171/015.htm

Cochraine and other sources provide a useful
discussion of the differences between these two
approaches.

Q : Why not just add up all the results across studies ?

Answer : There is concern about Simpson’s paradox.
Note, however that Mantel Haenszel analysis and Peto
analysis introduce their own biases and distortions of
the data results.

A recent approach to studying the influence that
weighting schemes can have on results has been
proposed through the construct of gravity, which is a
special case of  combinatorial meta analysis.

Modern meta-analysis does more than just combine
the effect sizes of  a set of  studies. It can test if  the
studies’ outcomes show more variation than the
variation that is expected because of sampling different
research participants. If  that is the case, study
characteristics such as measurement instrument used,
population sampled, or aspects of the studies’ design
are coded. These characteristics are then used as
predictor variables to analyze the excess variation in
the effect sizes. Some methodological weaknesses in
studies can be corrected statistically. For example, it is
possible to correct effect sizes or correlations for the
downward bias due to measurement error or
restriction on score ranges.

Meta analysis leads to a shift of emphasis from single
studies to multiple studies. It emphasises the practical
importance of the effect size instead of the statistical
significance of  individual studies. This shift in thinking
has been termed Metaanalytic thinking.

The results of a meta-analysis are often shown in a
forest plot.

Weaknesses
A weakness of the method is that sources of bias are
not controlled by the method. A good meta-analysis
of  badly designed studies will still result in bad statistics.
Robert Slavin has argued that only methodologically
sound studies should be included in a meta-analysis, a
practice he calls ‘best evidence meta-analysis’. Other
meta-analysts would include weaker studies, and add
a study-level predictor variable that reflects the
methodological quality of the studies to examine the
effect of study quality on the effect size. Another
weakness of the method is the heavy reliance on
published studies, which may increase the effect as it is
very hard to publish studies that show no significant
results. This publication bias or “file-drawer effect”
(where non-significant studies end up in the desk
drawer instead of in the public domain) should be

seriously considered when interpreting the outcomes
of  a meta-analysis. Because of  the risk of  publication
bias, many meta-analyses now include a “failsafe N”
statistic that calculates the number of studies with null
results that would need to be added to the meta-analysis
in order for an effect to no longer be reliable.

Forest Plot
From Wikipedia, the Free Encyclopedia
A forest plot is a graphical display that shows the
strength of  the evidence in quantitative scientific studies.
It was developed for use in medical research as a
means of graphically representing a meta-analysis of
the results of  randomized controlled trials. In the last
twenty years, similar meta-analytical techniques have
been applied in observational studies (e.g.
environmental epidemiology) and forest plots are often
used in presenting the results of  such studies also.

Although forest plots can take several forms, they are
commonly presented with two columns. The left-hand
column lists the names of the studies (frequently
randomized controlled trials or epidemiological
studies), commonly in chronological order from the
top downwards. The right-hand column is a plot of
the measure of effect (e.g. an odds ratio) for each of
these studies (often represented by a square)
incorporating confidence intervals represented by
horizontal lines. The graph may be plotted on a natural
logarithmic scale when using odds ratios, so that the
confidence intervals are symmetrical about the means
from each study. The size of  each square is proportional
to the study’s weight in the meta-analysis. The overall
meta-analysed measure of effect is represented on the
plot as a vertical line. This meta-analysed measure of
effect is commonly plotted as a diamond, the lateral
points of  which indicate confidence intervals for this
estimate.

A vertical line representing no effect is also plotted. If
the confidence intervals for individual studies overlap
with this line, it demonstrates that at the given level of
confidence their effect sizes do not differ from no
effect. The same applies for the meta-analysed measure
of effect: if the points of the diamond overlap the
line of no effect the overall meta-analysed result cannot
be said to differ from no effect at the given level of
confidence.

Forest plots date back to at least the 1970s, although
the first use in print may be 1996.[1] The name refers
to the forest of lines produced. In September 1990,
Richard Peto joked that the plot was named after a
breast cancer researcher called Pat Forrest and the name
has sometimes been spelt “forrest plot”.[1]
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